

PETRONILA AND SAN FERNANDO CREEK WPP OVERVIEW MEETING

AMERICAN LEGION HALL BISHOP, TX JANUARY 26, 2022

LUCAS GREGORY LFGREGORY@AG.TAMU.EDU

MEETING OBJECTIVES

- Present Draft WPP Overview
- Discuss Draft WPP Content
 - Additional Concerns
 - Additional Items to Include
- Discuss WPP Review Process and TimelineNext Steps

CH I. INTRO TO WATERSHED MANAGEMENT

The Watershed Approach

- A holistic stakeholder driven plan that addresses water quality in a watershed rather than political subdivisions
- Addresses all watershed impairments
- A mechanism for voluntarily addressing complex water quality problems across multiple jurisdictions
- A framework for coordinated implementation of prioritized and integrated protection and restoration strategies
- Integrates ongoing activities; prioritizes implementation projects based on technical merit and benefits to the community

Watershed Protection Plan Elements

- Identify Causes and Sources
- Estimate Loading Reductions Needed
- Describe Management Measures
- Education and Outreach Component
- Schedule for Implementation
- Define Measurable Milestones
- Source of Financial Assistance and Estimate Costs
- Progress Indicators to Measure Reductions and Adaptive Management
- Monitoring to Evaluate Effectiveness

CH 2. WATERSHED CHARACTERIZATION

Watershed **Description**

 Size and extent of the watershed – watershed map

Physical Characteristics

 Watershed Soils and Topography

Land Use and Land Cover

• Defines land covers and acreages across watershed

Population

Distribution, density,
 persons per household

Ecoregions

Climate

Aquifers

CH 3. WATER QUALITY

- Water Body Assessments
 - How the State assess water quality 2 year cycles by individual assessment units
- Texas Surface Water Quality Standards
 - Water quality benchmarks vary by assessment unit
 - Protective of Designated Uses

Bacteria

- Freshwater E. coli | 26 cfu/ | 00 mL
- Tidal water Enterococcus 35 cfu/100 mL

Use	Segment Number	Use Category	Criteria
Contact	2203	Primary contact	35 cfu / 100 ml (enterococci)
Recreation	2204 2492	recreation 1	126 cfu/100 mL (E. coli)
	2203	High	4.0/3.0 mg/L DO
	2204	Intermediate	4.0/3.0 mg/L DO
Use	2492	High	5.0/3.0 mg/L DO

CH 3. WATER QUALITY

- Dissolved Oxygen
 - Standards for Fresh and Tidal Waters by Use
- Nutrients
 - No standards Screening Levels compared to other waterbodies
 - Ammonia, Nitrate, Nitrite, Total Phosphorus, Chlorophyll-a
- Flow

Parameter	Screening Level	Level of Concern
Ammonia Nitrogen (NH3-N)	0.33 mg/L	
Nitrate Nitrogen (NO3-N)	1.95 mg/L	> 20 % of samples exceed
Chlorophyll-a	14.1 μg/L 21 μg/L (tidal)	Screening Level
Total Phosphorous (TP)	0.69 mg/L	J

CH 4. POTENTIAL POLLUTION SOURCES

Pollutant Source	Pollutant Type	Potential Cause	Potential Impact
WWTFs/ SSOs	Bacteria, nutrients	 Inflows & Infiltrations: Overload from large storm events Conveyance system failures due to age, illicit connections, blockages, etc. 	Untreated wastewater may enter watershed or water bodies.
OSSFs	Bacteria, nutrients	 System not properly designed for site specific conditions Improper function due to age or lack of maintenance / sludge removal Illegal discharge of untreated wastewater 	Improperly treated wastewater reaches soil surface; may runoff into water bodies.
Urban Runoff	Bacteria, nutrients	 Stormwater runoff from lawns, parking lots, dog parks, etc. Improper application of fertilizers Improper disposal of pet waste 	Stormwater drains quickly route water directly to creek or river
Livestock	Bacteria, nutrients	 Manure transport in runoff Direct fecal deposition to streams Excessive runoff from pastures due to over grazing Riparian area disturbance and degradation 	Deposited directly into water body or may enter during runoff events
Wildlife	Bacteria, nutrients	 Manure transport in runoff Direct fecal deposition to streams Riparian area disturbance and degradation 	Deposited directly into water body or enters during runoff events
Pets	Bacteria Nutrients	 Fecal matter not properly disposed of Lack of dog owner education regarding effects of improper disposal 	Bacteria and nutrients enter water body through runoff
lllegal Dumping	Bacteria, nutrients, litter	Disposal of trash and animal carcasses in or near water body	Direct or indirect contamination of water body

Bacteria

- E. coli
 - I26 cfu/I00 mL
- Enterococcus
 - 35 cfu/100 mL

— Geomean criterion (126 MPN/100mL)

- Nutrients (Freshwater/Tidal)
 - Nitrate
 - I.95 mg/L (I.10 mg/L)
 - Ammonia
 - 0.33 mg/L (0.46 mg/L)
 - Total Phosphorous
 - 0.69 mg/L (0.66 mg/L)
 - Chlorophyll-a
 - I4.1 μg/L (21 μg/L)

Station ID	AU	Water Body	Mean Nitrate (mg/L)	Mean Ammonia (mg/L)	Mean Chlorophyll -a (µg/L)	Mean Total Phosphorus (mg/L)
13033	2492A_01	San Fernando Creek	<mark>2.08</mark>	0.11	<mark>23.48</mark>	<mark>2.56</mark>
13090	2203_01	Petronila Creek Tidal	0.5	0.11	<mark>61.9</mark>	0.23
13094	2204 01		0.67	0.07	<mark>82.19</mark>	0.19
21598	2204_01	Petronila Creek	No data	No data	No data	No data
13096	2204 02	Above Tidal	0.72	0.11	<mark> 3 .07</mark>	0.6
20806	2204_02		0.19	0.06	<mark>38.3</mark>	<mark>2.65</mark>

Load Duration Curves

 Define needed load reduction targets to meet water quality goals across all flow regimes Petronila Creek, E. Coli Load Duration Curve: Station 13096, 1990-2021

Exisiting Geomean Load (MPN/year) — Allowable Load at Geomean Criterion (126 MPN/100 mL)

• Measurement Value (MPN/year)

Petronila Creek	Flow Condition			
Station: 13096	Lowest Flows	Mid-Range Flows	Highest Flows	
Existing Annual Load (Billion MPN)	1,140.61	2,353.61	4,526.12	
Annual Load Reduction Needed (Billion MPN)	1,010.37	1,736.45	3,165.22	
Percent Reduction Needed	88.58%	73.78%	69.93%	
Total Annual Load (Billion MPN)		8,020.34		
Total Annual Load Reduction (Billion MPN)		5,912.04		
Total Percent Reduction		73.71%		

Load Duration Curves

 Define needed load reduction targets to meet water quality goals across all flow regimes

10000 E. coli (Billion MPN/year) High flows Mid-range Low flows 00 0 flows 100 0 8 0 0 0 0 0 õ 0 0.0 00 0 0 0 0 0 25 50 75 100 0 Percent Time Load Exceeded

Exisiting Geomean Load (MPN/year) — Allowable Load at Geomean Criterion (126 MPN/100 mL)

Measurement Value (MPN/year)

⊞

San Fernando Creek	Flow Condition		
Station: 13033	Lowest Flows	Mid-Range Flows	Highest Flows
Existing Annual Load (Billion MPN)	399.13	2678.84	3970.33
Annual Load Reduction Needed (Billion MPN)	209.82	1781.51	1992.08
Percent Reduction Needed	52.57%	66.50%	50.17%
Total Annual Load (Billion MPN)		7048.39	
Total Annual Load Reduction (Billion MPN)		3983.41	
Total Percent Reduction		56.52%	

San Fernando Creek, E. Coli Load Duration Curve: Station 13033, 1990-2021

Spatial Analysis of Potential *E. coli* Loading

- Considers distribution of various bacteria sources across watershed
- Highlights parts of watershed with higher potential for bacteria loading
- Worst-case scenario: bacteria die-off is not considered
- Useful for planning prioritization

Management Recommendation

- Focus is on addressing bacteria loading in the watershed
- Ancillary nutrient removal benefits from most practices
- Address manageable sources
- Outlines planned number of practices
- Lists priority subwatersheds
- Provides cost estimates
- Estimates load reductions from implementation
- Discusses likelihood of implementation

Sources Addressed

- Livestock
- Feral hogs
- OSSFs
- Urban Landscapes: Pets and Fertilizer
- Stormwater
- WWTFs and SSOs
- Illicit Dumping

Livestock

- Develop Conservation Plans and Water Quality Management Plans
- Plans prescribe conservation practices that reduce bacteria loading by either changing livestock land use patterns or by keeping water on the landscape

	CP/WQMP # Planned for Grazing Operations	E. coli (cfu/year)	Nitrogen (lbs/year)	Phosphorus (lbs/year)
Petronila Creek	56	8.15× 10 ¹³	16,633	10,194
San Fernando Creek	178	1.50× 10 ¹⁴	30,610	18,761

Feral Hogs

- Remove hogs from the watershed: I 5% of population
- Reduce access to food sources
- Improve trapping success with information resources

	Hogs to be Removed	E. coli (cfu/year)	Nitrogen (lbs/year)	Phosphorus (lbs/year)
Petronila Creek	590	2.05× 10 ¹³	3,768	1,345
San Fernando Creek	2,674	9.28× 10 ¹³	17,080	6,100

OSSFs

- Inspect OSSFs
- Repair/replace 100 failing OSSFs
- Provide operation and maintenance education and outreach resources and programming

	OSSFs Planned for Repair or Replacement	<i>E. coli</i> (cfu/year)	Nitrogen (Ibs/year)	Phosphorus (lbs/year)
Petronila Creek	60	6.78× 10 ¹⁴	1,477	369
San Fernando Creek	40	4.52× 10 ¹⁴	985	246

Lawn/Landscapes: Pets and Fertilizer

- Install 25 dog waste stations in public areas
- Increase proper dog waste disposal education and outreach; change behavior for 10% of dog owners
- Include proper fertilization information in education and outreach

	Managed Dog's Waste	<i>E. coli</i> (cfu/year)	Nitrogen (lbs/year)	Phosphorus (lbs/year)
Petronila Creek	387	2.23× 10 ¹⁴	404	93
San Fernando Creek	1,650	9.49× 10 ¹⁴	1,723	397

Stormwater Runoff

- Increase education and outreach regarding stormwater management options
- Install stormwater BMP demonstration and education sites
 - No load reductions estimated
 - Options are numerous
 - Size and type of practice has considerable influence on efficiency

WWTFs and SSOs

- Repair and upgrade aging WWTF infrastructure at small facilities
- Address SSOs in WWTF conveyance systems
- Increase education and outreach regarding fats, oils, grease, non-flushables
 - No load reductions estimated
 - Reduction efficiency depends on type and size of repair
 - Funding drives ability to address each issue

Illicit Dumping

- Increase education and outreach regarding illicit dumping issues and management options
- Provide additional resources to minimize illicit dumping: additional dump sites; collection events
 - No load reductions estimated
 - Dumping does not contribute significant bacteria

Reduction Needed vs. Planned

	Petronila Creek	San Fernando Creek
Needed	5.91 x 10 ¹²	3.93 x 10 ¹²
Planned	1.00 x 10 ¹⁵	1.64 x 10 ¹⁵
Portion of Per	f Souce Reduction in tronila Creek	Portion of Source Reduction in San Fernando Creek

San Fernando Creek

Livestock = Feral Hogs = OSSFs = Pets

CH 7. EDUCATION AND OUTREACH

	Role of the Watershed Coordinator	Facilitates and tracks implementation
	Public Meetings	Summary of meetings held and participants
***	Future Stakeholder Engagement	Discussion of future stakeholder activities
	Education Programs	Summarizes various programs supporting implementation
	Events and Opportunities	Existing activities supporting implementation

CH 8. PLAN IMPLEMENTATION CH 9. IMPLEMENTATION RESOURCES

- Outlines management recommendation details
 - Briefly describes management measure
 - List responsible party for implementing practice or items supporting practices
 - Estimates unit cost each item where possible
 - Lists implementation targets over implementation period
 - Estimates total cost for implementation where possible

- Technical Assistance Needs
 - Describes topical expertise available to assist with practice planning, design, implementation and maintenance
 - Entities providing assistance listed
- Technical Resource Descriptions
 - Highlights existing technical programs and resources available to aid implementation efforts
- Financial Resource Descriptions
 - Describes sources of funding available for plan implementation
 - Highlights types of applicable implementation activities

CH 10. MEASURING SUCCESS

Water Quality Targets

Station(s)	Segment	Current	5 Years After	10 Years After
		Concentration [†]	Implementation [†]	Implementation [†]
13090	2203_01	44.9	40.0	≤35
13094	2204_01	419.4	272.5	≤126
13096	2204_02	592.5	359.3	≤126
20806	2204_02	28.8	≤126	≤126
13033	2492A_01	303.6	214.8	≤126

Additional Data Collection Needs

- Continued CRP monitoring
- Expand monitoring sites and frequency where possible
- Conduct focused monitoring to evaluate practice effectiveness

CH 10. MEASURING SUCCESS

Data Reviews

- Texas' biennial water quality assessments
 - Texas Integrated Report
 - 7 year rolling average
- Other Assessments
 - Geometric mean of most recent 3 years of data
 - Long term trend analysis
 - Focused assessments for special monitoring projects

Interim Measurable Milestones

- Non-water quality means to evaluate implementation success
- #s of practices implemented
- #s of programs delivered
- Area of watershed impacted

Adaptive Management

 Discussion on ability and mechanisms to revisit the WPP if implementation strays from plan, stalls, or results are less than expected

REMAINING WPP CONTENT TO ADD

Up Front

Cover Page Table of Contents List of Figures List of Tables List of Acronyms Executive Summary

In the Back

References

Appendices

- WPP elements reference list
- Loading calculations
- Load reduction calculations

NEXT STEPS

Send out Draft WPP Chapters for Stakeholder Review

- ETA for delivery is Jan 28th
- Request comments by Feb 20th

TWRI adds Front Matter, References and Appendices TWRI begins review for formatting consistency, grammar, etc.

TWRI addresses comments received and sends Final Draft for Stakeholder Review by March 7th Final Stakeholder Meeting to Approve the WPP: Last week of March

(do we need this to approve the plan?) April I - WPP sent to TSSWCB for final Agency Review then on to EPA from there

BAFFIN.TWRI.TAMU.EDU/

LUCAS GREGORY

979-314-2361

LFGREGORY@AG.TAMU.EDU